Reliañact

www.RelianceWaterHeaters.com

[^0]Why Expansion Tanks are Important

Thermal expansion occurs when water is heated during non-use periods. The installation of a Pressure Reducing Valve (PRV), Check Valve or Back Flow Preventer "closes" the water system, leaving water with no room for expansion. National Standard Plumbing Code 10.5.7 requires backflow prevention, to prevent backflow into the water main.

Thermal expansion in a closed plumbing system can be damaging, dangerous and costly. Its effects include damage to water heater tank and connections, gas water heater flue tubes, pumps serving washers and dishwashers, leaking faucets, "weeping" of water through the water heater T\&P Safety Valve, and noisy water hammer in the pipes. Most water heater warranties do not cover failure due to thermal expansion.

A properly sized Expansion Tank eliminates these problems, by giving water a place to go when thermal expansion occurs. When a water heating cycle ends, or when any fixture is opened within the system, the impact of thermal expansion is reduced, and water drains out of the expansion tank

Expansion tanks are
Expansion tanks are pre-charged with
38 PSI. If the inlet water pressure is higher than 38 PSI, the expansion tank's air pressure must be adjusted to match that pressure but must not be higher than 80 PSI.

.

MODEL NUMBER	MAX WORKING PRESSURE (PSIG)	TANK vOLUME (GAL)	MAX ACCEPTANCE VOL (60 PSI)	CONN. SIZE (MPT)	$\begin{aligned} & \text { DIMEN: } \\ & \text { (INCH } \\ & \text { DIAMETER } \end{aligned}$	$\begin{aligned} & \hline \text { ONS } \\ & \text { S) } \\ & \text { HEICHT } \end{aligned}$	$\begin{aligned} & \text { WEIGHT } \\ & \text { (LBSS) } \end{aligned}$	heater
ONE-YEAR LIMITED WARRANTY								
TW 5-1	150	2.1	1.03	$3 / 4{ }^{\prime \prime}$	7.9	11	4.5	Up to 52 gal.
TW 12-1	150	4.8	2.19	$3 / 4{ }^{\prime \prime}$	10.6	13.7	8.2	Up to 100 gal .
FIVE-YEAR LIMITED WARRANTY								
TW 5-5	150	2.1	1.03	$3 / 4{ }^{\prime \prime}$	7.9	11	4.5	Up to 52 gal.
TW 12-5	150	4.8	2.19	$3 / 4{ }^{\prime \prime}$	10.6	13.7	8.2	Up to 100 gal

Reliance ${ }^{\circledR}$ Expansion Tank Features

- Stainless Steel Acceptance Fitting
- External Baked Epoxy-Polyester Coating
- Two-Piece design
- 150 PSI rating
- Butyl Rubber Diaphrag
- Deep Drawn Steel
- 1 - and 5 -Year Limited Warranty
- 2-Coat Bonded Polypropylene Liner
- No wasted water

Typical Expansion Tank
Installation

Inle Water Pressuret	Water Heater Capacity in Gallons					
	30	40	50	${ }_{6}^{66}$	82	100
40 PSI	TW5	TW5	Tw5	TW12	TW12	TW12
50 PSI	TW5	TW5	TW5	TW12	TW12	Tw
60 PSI	TW5	TW5	TW12	TW12	TW12	TW12
70 PS 1	TW5	TW5	TW12	TW12	tw	TW12
80 PSI	Tw5	TW12	TW12	TW12	TW12	TW12

UPC

Reliance.

ell and Expansion
Tanks

Why Well Tanks are Important
A well tank is an essential part of any well system,
delivering these benefits: - It ensures that your pump will run for at least one
minute each time it cycles, as required by pump manufacturers.

- It stores a supplemental water supply between pump cycles, to reduce the number of cycles throughout
the day, and helps prolong pump life.
- It helps maintain water pressure within your system, ensuring proper operation of your dishwasher and ashing machine, and robust flow for showering and bathing.

A properly sized pump and well tank will work as a team to meet your needs and will deliver many years of dependable service.

How to Size a Well Tank

1. If you know your current pump size, use columns 2 and 3 in the sizing chart below to make your tank selection.
2. If you do not know your pump size or the size of your current tank, count all your water fixtures. Be sure to include sinks, tubs, showerheads, outside faucets, utility sinks, dishwasher, washing machine, etc. Count
each fixture individually. Use columns 1 and 3 in the sizing chart below to make your tank selection.
3. If replacing a glass-lined or other "standard" tank with a diaphragm tank, use columns 3 and 4 in the sizing chart below to make your tank selection.

SIZING CHART

SIZING CHART			
1	2	3	4
Number of	Estimated	Diaphragm	"Standard"
Water Fixtures	Pump Size	Tank Models	Tank Sizes
UPTO 7	$5.7 \mathrm{CPM}^{*}$	PMDH-20	42 GALL ON
8-10	$10 \mathrm{GPM}^{*}$	PMD-32 or 36	82 GALLON
10-13	${ }^{12-15 ~ G P M *}$	PMD-52	82 GALLON
13 -16	$16-20 \mathrm{GPM}^{*}$	PMD-65	120 GALLON
$17-28$	20 GPM*	PMD-86, PMD-119	220 GALLON

How to Install a Well Tank
Each Reliance ${ }^{\oplus}$ Pressurized Diaphragm Tank includes a detailed manual that takes you step-by-step through installation procedures such as:

1. Determining proper tank location
. Attaching the acceptance fittings
2. Adjusting the tank pre-charge pressure
3. Leveling the tank and connecting it to the water
supply line
4. Fine-tuning the tank to assure lag-free delivery

MODEL	VOLUME (US GAL)	DRAWDOWN $30-50$ PS	$\begin{aligned} & \hline \text { CONN. SIZE } \\ & \text { NPT } \\ & \text { (INCHES) } \end{aligned}$	$\begin{gathered} \text { A } \\ \text { (NCHES) } \end{gathered}$	$\begin{gathered} \text { B } \\ \text { (NCHES) } \end{gathered}$	$\stackrel{c}{\text { (NCHES) }}$	SHIPPING WEIGHT (LBS)
FREE-Standing well tanks							
PMD-14	14	4.3	1 F	$243 / 4$	$21 / 4$	$153 / 8$	26
PMD-20	20	6.1	1 F	$323 / 4$	$21 / 4$	153/8	30
PMD-32	32	9.9	1 F	$451 / 2$	$21 / 4$	153/8	40
PMD-36	36	11.2	1F	$323 / 8$	$21 / 4$	20	45
PMD-52	52	16.1	11/4F	$385 / 8$	$21 / 4$	$233 / 8$	77
PMD-65	65	20	$11 / 4 \mathrm{~F}$	$465 / 8$	$21 / 4$	$233 / 8$	87
PMD-86	86	26.7	$11 / 4 \mathrm{~F}$	59	$21 / 4$	$233 / 8$	105
PMD-119	119	37.0	$11 / 4 \mathrm{~F}$	$611 / 4$	$21 / 2$	26	165

IN-LINE WELL TANKS

PMDI-2	2	.6	$3 / 4 \mathrm{M}$	$103 / 16$	-	$81 / 4$	5
PMDI-5	4.5	1.4	$3 / 4 \mathrm{M}$	$143 / 4$	-	11	9
PMDI-	7	2.3	$3 / 4 \mathrm{M}$	$211 / 16$	-	11	14
PMDI-14	14	4.3	1 M	$231 / 2$	-	$153 / 8$	25
HORIZOTAL WELL TANKS							
PMDH-7	7.3	2.3	$3 / 4 \mathrm{M}$	$127 / 8$	$211 / 8$	11	16
PMDH-14	14	4.3	1 M	$173 / 8$	$213 / 4$	$153 / 8$	$251 / 2$
PMDH-20	20	6.1	1 M	$173 / 8$	$271 / 8$	$153 / 8$	30

Model, Item, Dimensions and Drawdown Drawdown is the actual useable water a tank can deliver during a cycle

Drawdown will vary depending on the operating
pressure range set for your well tank. Drawdown is a tank total volume is usable water, nately
,
NOTE: The maximum working pressure is 100 PSI . Install a pressure relief valve on every well installation

Replacing an Existing Well Tank
A standard well tank can be replaced with a diaphragm system.
Systall a pressur ensure system protection.

- Be sure to plug the air port on a
outside air is no longer needed.
- All open bleeder orifices in the well casing must be plugged.
NOTE: A pressurized tank always takes up less space than a similar capacity standard well tank.

Diaphragm Well Tanks

- For dependable protection of your jet or submersible well pump
- Steel shell with
powder-coated exterior for maximum corrosion resistance
- Metal air charge valve is conveniently located and resistant to mechanical
danag
Strong butyl rubber paraboic claphrragm
delivers dependable service
- Powder-coated inner shell protects the water reservo

How a Diaphragm Well Tank Works

1. START-UP CYCLE

Diaphragm is pressed against the bottom of the chamber.
2. FILL CYCLE

Water is pumped into the reservoir, which forces the diaphragm upward into the air chamber.
HOLD CYCLE
Pump-cutoff pressure is attained. Diaphragm reaches capacity.
4. DELIVERY CYCLE

Pump remains shut off while air pressure in top water to the systep diaphragm downward, delivering

[^0]: 500 Tennessee Waltz Parkway
 Ashland City, TN 37015 Ashland City, TN 370
 1-800-365-4054

 ## Reliancer reserves the right to make product changes or improvements without proro notice. Dimensions, improvemen markess.

 Q2021 Printed in
 RPTBRO1021

